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1 Statement of Problems Studied

The stated aim of this three year project under the contract number ARO DAAD19-02-1-0211 was to
develop mathematical principles for supporting the threat evaluation stage of the Intelligence Preparation
of the Battlefield (IPB) process for asynchronous Low Intensity Conflict (LIC) threats (FM34-7, Section
3-9). Relevant Army programs include the ARL Collaborative Technology Alliance in Advanced Decision
Architectures (CTA/ADA) managed by the U.S. Army Intelligence Center (USAIC) at Ft. Huachuca. This
work provides theoretical support both for the design of secondary command and control (C2) coordination
tactics for distributed forces, and for the analysis of enemy tactics for IPB. Results of this research were
reported at Ft. Huachuca in December, 2004.

Of particular interest was the capability of a multifactional force to pose a coordinated threat subject
to environmental constraints. Example threats included multifactional insurgencies (e.g., in Somalia – both
clan-based (1990s) and more recently led by Islamic groups, ongoing ethnic conflicts in Kosovo, and coor-
dinated suicide bombings in Iraq) or from an international terrorist group (e.g., al-Qaeda). An important
tenet in modeling such systems is that individual groups act without central guidance (though, perhaps, in
accordance with general training doctrine), but groups can adapt their actions based on those of others.
This raises an important limitation concerning the types of threats that we model. The attacks of 9/11 were
scripted. They did not occur as a spontaneous response to indigent circumstances of an ongoing struggle
and, therefore, do not fall into the category of insurgency to which our models pertain. Centrally coordinated
or scripted threats require high level information and are best dispelled by tenaciously gathering, decoding,
assembling, and analyzing that information.

In multifactional insurgencies, different groups often compete for common resources in their quest to pose
a sustained threat to a common adversary. They are not prone to cooperate, or even to communicate plans.
So the term coordination here requires a modicum of explanation: it refers to the ability of a collection of
agents or factions to sustain conditions that enable a series of separate acts to be carried out and to achieve
their intended outcomes. In this sense, the Iraqi insurgencies fit within our scheme but the actions of 9/11
do not.

The general objective of this project was to develop a low level modeling and metrics framework for such
asymmetric threats. Specific goals included:

• prediction of the emergent coordination or disruption of activity in social systems models that

– employ regulating feedback, often construed as violence, as a means of achieving goals and

– use learning to improve performance;

• assessment of whether the observed systems possess near optimal fitness states that

– can be attained quickly via a decentralized search strategy and

– are robust to small perturbations of rule parameters or environment;

• determination of conditions favorable or opposed to such optimization.

In the 2003 and 2004 Interim Progress Reports for this program, the systems we sought to model were
referred to as “communities of violence” and the notion of a ‘ping’ was used to symbolize violence. However,
a ping could be interpreted in a broader sense as a form of symbolic threat that prevents another agent from
taking a certain action. With this broader sense our models closely reflect other social systems that partially
model control of territory such as traveling salesmen as outlined in [14]. While such generic models support
general conclusions, one has to be certain that model parameters accurately map to physical systems of
interest before one can infer behavior of the real system from simulations. Nevertheless, our mathematical
framework certainly provides a means to quantify low-level coordination capability through performance
metrics and, possibly, methods for influencing coordination.
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1.1 Basic considerations for our models

Two key features separate our work from the bulk of the growing and already considerable research on complex
adaptive systems (CAS) modeling (e.g., http://www.casresearch.com/) and even on much of that relating
to asymmetric threats, (e.g., http://www.cna.org/isaac/terrorism and cas.htm). First, we aim ultimately
to model human social systems, albeit at a low level. Secondly, we seek to model meso-scale systems –
collections of agents containing more entities than what can manageably be analyzed by hand, but too few
to justify analysis based on large scale averages. A collection of terrorist cells or a multi-factional insurgency
involving 10 to 100 active units would fall in this category.

It is often noted that social networks display complex collective behavior despite simple interaction rules.
It is often the case though, as with swarm models, (e.g., Bonabeau et al., [4]) that individual, and even
collective, behavior is predictable. Human behavior is much less so. Models of particular human social
systems such as insurgencies will never be able to predict when and where a particular event will occur. At
best, simulations can indicate preconditions for collective actions when hypotheses on the basic natures of
interactions are met.

Additionally, human systems adapt in short time frames through communication of ideas – not through
large risks for the purpose of incremental information gains as in the case of stable biological/ecological
systems. So it does not often make sense to model change in a human social system through genetic search
algorithms as one would do, say, for Kaufmann nets [11], cf. [10]. Nor is it prudent to model human social
systems as efficiently designed systems of seamlessly interacting parts. Instead, we choose to model flows in
social networks in terms of responses to and actions in response to an agent’s social and material environment
whose constraints induce competition for resources.

In addition to decision and action rules typical of any CAS model, a social network also employs some
form of communication, e.g., [6]. In our communities-of-violence models this communication takes the form
of a ping which imposes a delay, or inaction, on its recipient.

With these principles in mind, we sought methods for predicting the emergence and stability of coordi-
nated activity in constrained environment simulations. This requires quantification of rules for interaction,
of environmental constraints, and of meaning and degree of competition and coordination.

1.2 Coordination versus cooperation

By coordination, we mean the ability of agents to align their internal states in such a way that the entire
system reaches a high level of performance. In a constrained resource environment, coordination takes a
meaning similar to that in noncooperative games (e.g., [8, 7, 5]) and necessarily differs from cooperation,
which refers to agents employing commonly agreed-upon methods, including contractual resource sharing,
to achieve common interests. Cooperation can result in a stronger competitive force at the group level and
is a common element of systems utilizing collective intelligence (e.g., [16, 17]). But it was not our goal to
model the development of collective agreements.

We were concerned, instead, with understanding general conditions under which a collection of greedy
agents can find, within a large and complex configuration space, sequences of actions that result in common
gains. Technically, we say that coordination occurs when the utility of a group of agents is increased by
their carrying out a collective action in such a way that this collective utility exceeds an expected sum of
individual utilities. This does not necessarily imply that each agent benefits equally or even that agents all
act in a homogeneous way. A good illustration of this, in an even more basic context than ours, is the case
of minority games [5, 10]. The simplest version is an (iterated) binary voting game in which the winners are
those casting a minority vote (which is well defined when the number N of agents is odd). This game, by
definition, is not cooperative. However, coordination is perfectly well defined in terms of agents employing
individual strategies such that, on average, the minority is larger than if agents voted at random. In contrast,
if two agents were allowed to communicate with one another, and sufficiently rational to notice that expected
long term payoff is less than half, then the pair could guarantee an average score of half by mutually agreeing
to alternate their votes both in time and with one another. This would be cooperation.
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In multi-player, matrix payoff games, agents learn optimal individual strategies via hypothesis testing
[8, 9]. An agent must, in effect, act contrary to its perceived short term interests in order that the system
realize an adequate estimation of the payoff function, provided the system is not so complex that an agent
cannot estimate a systemic response to its actions (e.g., when N is small). In contrast, in the Ping systems
outlined below, greediness of individual agents seems a prerequisite for coordination in that it adds some
predictability of the actions of others. Consequently such systems can be driven into limit cycles, though
performance along those depends on several behavioral parameters.

One of our main findings, in fact, is that the extent to which collective reward can be aligned with
individual utility is largely a consequence of how constrained a system is: when the system has enough
internal degrees of freedom, system performance is correlated, on average, with individual performance. In
contrast, in highly constrained systems, collective performance tends to be optimized when the few degrees
of freedom are exploited by a small subcollection of agents. The remaining agents become victims of their
greed. Thus, while one must be careful in regarding the analysis of the particular simulations discussed below
as indicative of general principles, nonetheless our simulations at least seem to be consistent with notions of
ergodicity in the complex adaptive systems (CAS) literature.
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2 Summary of Results

Most of the progress made under this program has already been reported in the interim progress reports
[12, 13, 14]; some new observations are made at the end Section 2.2.3.

We sought to quantify essentially three aspects of performance in ping systems. First, how does contention
among agents for access to external resources dictate protocols for movement and updating information?
Secondly, how does physical geometry influence network connectivity and vice-versa? Thirdly, how can one
predict system performance when dynamical rules are discrete and actions are based on nonlinear agent
thresholds, prohibiting the application of classical tools of differential equations, but not necessarily of
combinatorial tools?

The first question is addressed in the discussion of the particular model protocols for Ping I and Ping
II as discussed in Sections 2.1.1 and 2.2.1. The second question is addressed, to some extent, by looking
at the differences between Ping I and Ping II. Ping I is a linear model, having a single bottleneck. Ping
II, in contrast, is a grid model. Congestion can form locally when the density of agents (number of agents
over number of nodes) is high. We have not extended Ping II to agents moving on graphs other than
periodic grids; however, we have tried to quantify performance metrics in such a way that the analysis can
be extended readily to this important, more general case. In terms of metrics, we have quantified system
capacity – a measure of optimal performance given system constraints. This provides a-priori bounds against
which actual performance can be measured. It also provides a baseline for performance under different agent
protocols, testing differences in performance for different parameters. More refined metrics include efficiency,
which takes into account ability of a system to respond to constraints, and proportionality of response, which
quantifies the extent to which agents do or do not form cycles of retribution in response to pressure brought
on by system constraints. A basic discovery is that our Ping systems perform better, in general, when agents
do not form such cycles. In terms of our prior remarks regarding coordination, this means that systems that
are able to coordinate tend to be ones in which feedback is dispersed. One important question that we have
not been able to address is that of determining precise preconditions, phrased combinatorially in terms of
system configurations or short sequences thereof, under which coordination breaks down even though global
constraints may not be so severe.

2.1 Coordination in a bottlenecked environment: Ping I

In Year 1 we developed and studied a simulation platform, that we called Ping I, for modeling communities-
of-violence in which conflict arises over access to a common resource that is required intermittently by each
faction (e.g., access to roads or civic communications). Intermittency allows that, for certain ratios of supply
and demand, factions can share the resource efficiently if their needs for access are desynchronized. Of prin-
cipal concern is whether, and under what sort of interaction policies, is desychronization possible when the
resource is scarce in the sense of being insufficient to satisfy all needs on a continual basis. Violence (pinging)
is expressed as a reaction to scarcity and takes the nonlethal form of temporary physical obstruction. Ping I
embodies specific elements of Rosenschein and Zlotkin’s [15] generalized models for “restricted usage/scarce
resource” domains. To quantify these issues in basic terms, we designed Ping I as a one-dimensional agent-
based simulation platform in which agents were visualized as responding to frustration resulting from waiting
for a supply resource required intermittently upon completing a sequence of production steps.

2.1.1 Outline of Ping I Mechanics

Ping I systems involve N agents A1, . . . , AN that individually and repeatedly complete process cycles of
L steps. After the final process step each agent must complete an update/resupply step which involves
accessing a shared resource having S access channels. The condition of having more demand than supply
is quantified by the constraint that C = S ·N/L < 1: then there are fewer access channels than agents per
step so it is impossible for the agents to desynchronize in such a manner that each agent has access when it
completes its cycle.
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In this case, an update queue forms and agents are frustrated by those who are in front. Ai’s frustration
takes the form of incrementing a weight wij when Aj precedes Ai. In each step, Ai checks its net frustration,
Σwij over those Aj in front of Ai – either in terms of processing step or supply queue. If this sum exceeds a
fixed threshold T , Ai pings a fixed number P of those agents that have frustrated Ai the most (with certain
tiebreaking rules). The weight wij is also incremented whenever Aj pings Ai. For each ping received, Ai

must remain stationary for one time step. The simulation parameters are summarized in Tables 1 and 2.
Basic performance metrics are summarized in Table 3. Figure 1 contains a visual representation of agent
states in which the update step is represented as access to a database. Figure 2 illustrates evolution of ping
chains. Plots on left in that figure show ping activity is seeded by update frustration and mean system
processing rate decreases as delays accumulate.

Table 1: Summary of Ping I dynamical steps for Ai

1 if threshold exceeded then ping

2 compute incoming pings

3 if in processing mode: if delayed then decrement delay counter
else proceed forward one step

if not delayed and processing completed then switch to resupply mode
else switch to queued mode

4 if queued and channel open then switch to resupply mode
else decrement queue counter by S

5 if in update mode then switch to processing step one

6 update weight counters

Table 2: Ping I system parameters

M number of agents or model size
L processing steps per cycle
S source capacity
T threshold
P agent fanout – number of agents pinged and delayed

2.1.2 Conditions for coordination

Production capacity C characterizes the degree of constraint of the system. We will say that a Ping I system
is coordinated provided the overall production R(n) is close to system capacity C, at least for large enough
n. General system behavior based on the ratio P/T is summarized in Table 4 and asymptotic mean fitness
values are plotted in terms of (P, T ) in Fig. 4.

To justify the observations in the table heuristically, suppose that up to S agents can be updated in each
time step. If C = SL/N < 1 then, on average, some agents cannot be updated. Let d denote the average

9



Figure 1: Visual representation of states of a system of 25 agents with production cycle length L = 7.

M = 15, S = 1, P = 5, T = 1

Figure 2: Ping chains for a system of 15 agents over several consecutive steps.
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Table 3: Parameter dependent performance metrics for Ping I

Performance metric mathematical notation

system production capacity C = SL/N

total process steps by Aj to time n Prj(n)

mean process rate or fitness of Aj Prj(n)/n

mean system process rate or fitness R(n) = (
∑

j Prj(n))/(Nn)

number of delays that each agent receives in a processing cycle. Thus, on average, agent process cycles take
L+ d steps to complete. Then there should be Nd total pings distributed per L+ d times. In order that the
agents can be desynchronized, that is, at most S agents complete their process cycles in each time step, we
must have S(L+d) > N . In order that update space is not under utilized, we should then have S(L+d) = N
or d = (N/S)− L.

Since, over the system, the number of pings given equals the number of delays received, Nd/P agents
should ping per L + d steps, or on average, an agent should ping every P (L + d)/d times. If the only source
of frustration were to come from pings then an agent should receive T pings every P (L + d)/d steps. Then
Td/(P (L + d)) = d/(L + d) or T = P . On a more intuitive level, if P > T then delays accumulate in the
system, while if P < T then some agents will inevitably have to wait in the update queue.

While the condition P ≤ T is necessary for systems to realize full capacity, there is no guarantee that
pinging will desynchronize the system. Conversely, in some situations agents may not ping until well after
exceeding threshold. In this case we could still have a coordinated system with P ' T . This behavior is
borne out in simulations. Of course, in the limit T →∞ there is no pinging and capacity is always realized.

It is worth noting that, in our simulations, agents are allowed to ping while delayed. This results in a
faster decline in fitness as T gets small in relation to P . Conversely, if agents were not allowed to ping while
delayed then systems would be even more efficient.

Table 4: General performance and P/T

P/T effect long term behavior

P/T � 1 ping feedback, delays accumulate frozen subsystems

P/T � 1 pings dissipate frustration performance near capacity

P/T ≈ 1 ping frustration balanced coordination, intermittent feedback

11



2.1.3 Further indicators of performance in Ping I systems

Several other aspects of Ping I systems were analyzed and reported in the Interim Progress Report for Year
1 [12] to which we refer for detailed analysis of the following aspects of Ping I systems:

• Growth of configuration space as functions of:

– Threshold T : possible weight configurations grow polynomially in T for fixed N

– Number of agents N : both weight vector and ping matrix configurations grow exponentially in
N for fixed threshold T and fanout P .

• Periodicity. Ping I systems settle into periodic limit cycles quickly when P > T , while dynamics remain
ergodic when P > T .

Structure of limit cycles is an important aspect of these systems. As a general rule, feedback of ping
energy among agents drives down the fitness of those agents. The complexity of system dynamics has
precluded our finding precise expressions determining when such feedback is imminent in systems that are
not highly constrained, though we have observed the emergence of this sort of feedback. Heuristically, this
happens when many agents are close to the update step (in front of one another) and are close to threshold
among all subsets of weights. In such cases, ping feedback loops can form when P ≈ T and drive the system
to poor performance.

With these observations in mind we defined three metrics quantifying these correlates of fitness, namely

• Proportionality of feedback. This quantifies the extent to which the pings distributed by an agent
correlate with the (ping) frustration received from those agents. A large value indicates feedback
structures indicative, in turn, of unsatisfactory performance. A particularly relevant question, but one
that is still open, is whether there is a threshold value for this metric beyond which feedback becomes
self-sustaining at a high level systemwide (when P > T ). Such a threshold would indicate particular
vulnerability of a system to a perturbation (e.g., external forcing) that would lead to poor global
performance. Fig. 3 shows that, generally, feedback becomes more proportional as P/T increases.

• Effective threshold. For a given ratio P/T some systems can still perform better than others, largely
depending on marginal ability to remove stored frustration through pinging. The effective threshold
measures how much total frustration weight has accumulated, on average, before an agent pings. Recall
that Ai only checks its threshold against its weights summed over those Aj in front of Ai. If Ai’s weights
tend to be evenly distributed over all agents then Ai will likely have a high effective threshold. Thus,
this metric complements proportionality of feedback. When agents are desynchronized in their update
cycles, systems with high effective threshold tend to be efficient in the sense that update channels tend
to be utilized to their full extent.

• Volatility of a ping system can be expressed in terms of the distribution in time of ping events with
large magnitudes. In well-performing systems the principal of self-organized criticality [2] stipulates
that this distribution will obey a power law, that is, will be close to log linear. Volatility can then be
expressed as deviation from log-linearity. Values of this volatility metric as they depend on P and T
are plotted in Figure 5.

Further information regarding system complexity is contained in [14, 14]. Perhaps the most compelling
question regarding Ping I systems is: are there simple rules under which agents can learn, given a fixed
threshold value T , to adapt their fanout parameter for better overall performance? Secondly, are there
simple rules under which agents can learn to self-impose a delay in order to avoid being delayed further?
The difficulty with both of these questions boils down to complexity: if all agents are following more complex
rules, then the problem of how to learn a best strategy in an unpredictable environment is highly ill posed.

12



Figure 3: Expected pinger-pingee dynamics

70 % capacity 30 % capacity

Capacity realized P < T

Rapid decline

Decline begins for larger T / P

Figure 4: Production versus capacity
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Volatile dynamics
P < T Ergodic dynamics

P < T

70 % system capacity 30 % system capacity

Larger region of volatility

Highly
constrained

Figure 5: Volatility as it depends on P and T and on capacity

2.2 Coordination in collection of a distributed resource: Ping II

In Ping I the update step represents access to a shared resource. Bandwidth constraints amount to a
bottleneck when SL < N and performance of a Ping I system boils down, essentially, to the question
of whether agents can desynchronize their need for access. In many domains, the resource is spatially
distributed but still shared. Bottlenecks can still develop locally. In order to achieve reasonable global
productive behavior, a system of agents then must be capable of searching collectively and implicitly for
allocation schedules consistent with the constraints of the system. Assuming that agents are inherently
greedy, i.e., an agent will only act to maximize its short term gains, and will only forego reward when a
threat is perceived, pinging in such a system can serve to offset agent greed, enabling the whole system to
perform better.

In Year 2, we extended the one-dimensional model (Ping I) to a two-dimensional grid model (Ping II)
in which agents seek to collect reward that is distributed and regenerated at grid nodes. In addition to
retaining the aspects of greedy agents who can ping one another to enforce delays, we also endowed agents
with low-level, neural network based learning of risk and reward relationships between its current position
(in space and time) and configurations of neighboring agents.

With geometry comes additional complexity. For example, relative update capacity is somewhat analo-
gous to agent density – the total number of agents divided by the total number of nodes; but it also depends
on the rate at which reward is generated at nodes. Despite its added complexity, Ping II is only marginally
more realistic as a model of agent behavior than is Ping I.

Ping II is an example of a mobile social network in which agents move along the edges of a graph according
to some set of update rules. Reward is distributed at the nodes of the graph and is updated according to
some allocation rule (see Section 2.2.2). Each individual agent seeks to collect reward at an optimal rate.
Local update rules and reward allocation should conspire to provide satisfactory system performance. The
two goals – local and global optimization – can be in conflict because, by collecting reward as rapidly as
possible, an agent might diminish what remains for other agents in its wake. Thus we see an interplay of
four key features of a social network at this level of abstraction:

• Topology of the underlying graph on which reward is allocated and collected

14



Figure 6: Screenshot of Ping II visual display window

• Law(s) by which reward gets allocated

• How agents interact with one another

• Agent decision rules for where to move next

In order to keep topological issues reasonably simple, we work specifically with square toral (i.e. periodic
boundary) grid models in which agents can move in one of four directions (N,S,E,W). One important feature
of grid geometry is scalability: basic quantities like density (agents per node) are independent of system size.

Interaction is the hallmark of a social system. As Ferber [6] suggested, tags play a fundamental role
in communication networks. The simplest type of tag at a site just keeps track of when the site was last
visited and/or who last visited the site. We use this same information for allocation of reward. One of the
most significant aspects of Ping II as a mobile social network is that an agent can take an action to prohibit
another from collecting reward, under certain conditions. Coupled with the law for allocation of reward,
when rational agents are able to form appropriate hypotheses regarding the consequences of their actions
in light of this form of coercion, it is possible that a Ping II network can exhibit a distribution of reward
collection that is consistent with a reasonable notion of coordination – namely that agents (i) avoid getting
in each others way – insofar as this is possible and (ii) by doing so, global achievement of reward can – in
principle – be optimized when individual reward is distributed in a homogeneous way, i.e., coordination can
occur.

2.2.1 Outline of Ping II Mechanics

Figures 6, 7 and 8 show screenshots of Ping II simulation windows for entering simulation parameters, and
for visualizing and analyzing agent interactions. The simulation environment was developed in visual C++
first by Chris Weaver, and further by Scott Izu and Michael Eydenberg, all PhD students at NMSU.

The Ping II display window shown in Fig. 6 provides a visual illustration of evolving agent positions,
ping interactions, and frustration levels. Agents are represented by different colors. Interactive features
include ability to step forward and back up, thus visualizing sequences of agent movements and interactions.
Display files output from different simulation runs can be loaded into the window, thus allowing for direct
visual comparison of different simulations.

15



Figure 7: Screen shot of Ping II setup window.

The setup window in Fig. 7 for Ping II simulations allows the user to specify all of the system parameters
specified in Table 6, in addition to neural net parameters.

The simulation data window in Fig. 8 shows a file that keeps a record for the main data for each time
set of a Ping II simulation, including agent positions, delays, and accumulated reward. Alternate versions
output fuller data, including frustration matrices and ping matrices.

Agent logic. In Ping II, a system of N agents inhabits a two-dimensional square grid of size K ×K. Each
agent is assigned an identification number i ∈ {1, . . . , N}. As before, we refer to the i-th agent as ‘Ai’.
Like Ping I, Ping II is a threshold-delay model. Simulations are initialized with a ‘pseudo-random’ seed that
determines initial configurations of all agents.

In each time step the agents undergo a two-stage process – action then update – taking their turns in
each stage according to a (randomly initialized) queue. Those agents that are most delayed go to the back of
the queue. Agents that get to move first in a time step have first opportunity to gather reward that is within
reach. For the purpose of this report, agents are homogeneous in that threshold and fanout parameters are
the same for all agents – as was the case for Ping I. The agent logic in each stage is summarized in Table 5.

Here are some brief comments about assignment of system parameters and decision/action protocols for
agents. They are taken from the perspective of the understanding that we now have of Ping II systems,
including some understanding of system capacity, that we did not have when we first introduced Ping II.
Suppose for the moment that we have a reasonable way of formulating the capacity C of a Ping II system,
as we will do below. Then it is natural to ask: what sorts of homogeneous greedy agent protocols can
result in system coordination and, thus, near attainment of capacity? Again, the assumption of greed is
non-negotiable: an agent can only act in a manner consistent with maximizing its expectation of reward –
possibly long term if it has sufficient rational power. Our approach to studying conditions for coordination
boil down to combinations of fixed agent protocols and agent and system parameters that induce or inhibit
coordination.

First, when its turn comes, Ai moves to the site among its four von-Neumann neighbors that maximizes a
cost-benefit value predicted by a neural net, based on the local conditions up to two steps from the neighbor
site in question. The neural net is described in [14]. It takes into account the frustration levels of the agents
in this region and their relative move order. Agents experience frustration over ownership – meaning some
perception of control of a node, which might be defined different ways. We chose a simple rule: Ai thinks
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Figure 8: Screen shot of Ping II simulation data window

that it owns any site at which Ai has collected reward. Ai then increments its frustration weight for Aj by
one unit whenever Aj collects reward at a site on Ai’s ownership list. Other rules of perceived ownership
are possible and we will mention them and their consequences in Section 2.2.3. Ai checks its frustration by
summing all of its weights. If this sum exceeds a fixed threshold T then Ai distributes P pings as evenly
as possible against any pingable neighbors – defined simply as those agents occupying one of the four nodes
adjacent to Ai. If there are no such agents then Ai continues to be frustrated. Upon being pinged, Ai

becomes passive for one time step for each ping received. This means that Ai can move, but cannot collect
reward or ping. This is different from Ping I in which a delayed agent could ping but could not move. If
Ai is pinged by Aj then it increments its weight for Aj by pji – the number of ping units received: here∑

pji = P .
With these simple rules (with further details as described in [14]) it is clear that, as was the case with

Ping I, system behavior will depend on the relative parameters P and T . Capacity will also depend on the
agent density defined as the number of agents per node. The situation is slightly different from Ping I, in
which capacity depended on the number of agents, nodes, and update channels. Thus, in Ping II the source
of initial frustration is different. The rule for pinging also has an important difference: in Ping II pings are
directed at neighbors, not necessarily at those who pinged. This disproportionality can prevent formation of
feedback of frustration. Finally, capacity also depends on the rules under which reward is allocated at grid
nodes.

2.2.2 Reward and capacity

We have defined reward as a site specific quantity that is collected by agents as they visit nodes. The capacity
and, intuitively, the ability of agents to coordinate depends on how reward accumulates at sites. We assume
that when an agent visits a node it collects all the reward there. The basic assumption on reward is that
it should be increasing between collection times. A less obvious axiom is that reward should be bounded.
Not only is this consistent with real systems involving replenishable but locally bounded resources. It also
prevents chaotic system behavior and allows us to make new and precise statements about the nature of
coordination.

In view of these observations, we proposed to use a discrete logistic reward function, defined in terms
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Table 5: Ping II agent logic

Stage 1: If a neighboring Move to open site
Update reward site is open then: that maximizes:

(Normalized Reward - Risk).

If Ai believes that it check owner of current tag.
controls its current node then: If owner is Aj (j ∼ i) then increment wij :

Ai’s frustration counter for Aj .

If delay is greater than zero Collect reward at site
then decrement delay counter. (one minus tag value).

If delay is zero then: Reset tag value to 1/β and (if necessary)
ownership to Ai.

Stage 2: If Ai is frustrated Check for neighbors and
Update delays (sum of frustrations exceeds threshold) distribute pings among them.

and not delayed then: Zero out frustration vector.
Update risk neural net.

Increment delay by number
of pings received and increment

wij for each ping from Aj .

of a tag factor (see [14]) β ∈ (0, 1). Thus we define the reward r(t) at a site t unit steps since it was last
collected as r(t + 1) = r(t) + (1− β) · (1− r(t)) = 1− βt−1 when r(1) = 0, reflecting that one full time step
must intervene before reward accumulates. For small β, r(t) ↑ 1 quickly but r(t) ↑ 1 gradually when β . 1.

With this replenishment function we derived the following general formula for system reward when agents
Ai collect reward on pairwise disjoint sets Ci of collection nodes of magnitude |Ci| and with di delays per
cycle:

R(C1, . . . , Cn; d1, . . . , dN ) =
1
N

N∑
i=1

|Ci|
|Ci|+ di

(1− β|Ci|+di−1). (1)

We were able to establish a general principle stating that, when the reward allocation function is concave,
as it is in our case, system reward is maximized when |Ci|+di are uniform across agents, with a waiting time
value t(β) = |C|+ d that optimizes the reward function R(β, t) = (1−βt−1)/t. The optimal t(β) is just over
5 when β = 0.9 and just under 2.5 when β = 0.5. The waiting time is the number of steps between successive
reward collections at a site and must be a whole number. When the optimal waiting time is nonintegral the
waiting times should average out to the optimal waiting time, with minimal variance. The problem then is
to come up with a decomposition of the grid into disjoint subsets of nodes Ci, and agent closed paths C̃i of
length |Ci|+ di, such that agents collect at nodes of Ci and are inactive at the other di nodes, in such a way
that (i) |Ci|+ di = t(β), the optimal waiting time and |Ci| and di vary as little as possible.

Depending on grid size K and density N/K, the incompatibility of these criteria may not allow for near
optimal performance. A more general approach allows agents to share collection sites in such a way that the
length plus delay equals optimal waiting time criterion is met essentially at all nodes, but this might need to
happen over several traversals of the grid. Examples of how this works are given in [14].

Given these observations we can finally formulate the capacity of a grid of size K with reward factor β:
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Table 6: Ping II system parameters

M number of agents or model size
K2 number of grid points

D = M/K2 agent density
β tag value factor
T threshold
P agent fanout – number of delays distributed among neighbors

Table 7: Parameter dependent performance metrics for Ping II

Performance metric mathematical notation
System capacity see below

Agent reward to time n Ri(n) see below
Time average agent reward Ri(n)/n

Average system reward Ri(n)/(nN)

The capacity C(K, β) of a grid of size K and fixed reward factor β is C(K, β) = KR(β, t(β)) where t(β)
is the unique maximizer of R(β, t).

Given this definition of capacity, some limitations on the ability of a collection of agents to coordinate
can be given right of the bat. First, if K/N = t(β) and if the grid can be divided into N disjoint cycles each
of length K/N then capacity can be realized with no delays. We then say that the agent density is β-critical,
or simply critical. If the density is subcritical, that is, there are too few agents, then system capacity cannot
be realized: the agents cannot cover the grid fast enough. If agent density is supercritical then delays are
necessary in order to realize capacity.

It is difficult to give a precise formula for the desired relationship between threshold T and fanout P in
order that a supercritical collection of agents will perform near capacity. Arguing as in the case of Ping I,
one can formulate what the desired ratio P/T would be to realize the optimal waiting time t(β) on average if
agents moved randomly to a neighboring site with equal probability for each available node. However, in this
case there would be nontrivial variance in waiting times about the optimal average t(β) and the inevitability
of significant deviations in the case of random behavior precludes system reward nearly attaining capacity.

In [14] we analyzed average and variance of waiting times as they depend on the parameters P and T .
The essential finding was that, for a given replenishment factor β and supercritical density, systems that
achieve a desired average waiting time are subject to wide variations of the same, while systems exhibiting
small variations in waiting times either have too much or too little average delay. These results pertain to
agents running under the protocols in Table 6. Thus, either more efficient action protocols or greater rational
powers are required of the agents in order to (nearly) achieve capacity.

2.2.3 New observations on Ping II

In this final section we will report some new simulation analysis for Ping II that was done after submitting
the 2004 Interim Progress Report. These results concern the performance of ping systems under alternative
protocols for pinging. In each case the ping system is equipped with a neural net adjusted to system protocols.
The differences between the three versions that we consider are summarized in the Table 8.

In version 1, a fixed number P of pings is divided among all pingable neighbors. In version 2, the fanout
P is still fixed but only active neighbors are pinged. In particular, if all of Ai’s neighbors are already delayed
then Ai will not ping. In versions 3 and 4 the fanout is adapted to the frustration level (sum of weights) and
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the number of pings distributed among neighbors is this sum, minus the agent’s threshold. Versions 3 and 4
differ in ownership rules. An agent places a tag at each node that it visits while in active mode, superseding
any tags placed by previous agents. In version 3, Ai does not own a node until a situation arises that no
other agent tags the node between subsequent visits by Ai. In version 4, Ai owns any node that it tags.
Once Ai owns a node, it adds one unit of weight to its frustration any time another agent tags a node that
Ai owns. As we have set things up, pinging resets frustration to zero but it does not eliminate ownership. It
would be of interest to study the case in which a pinging agent relinquishes ownership at the least recently
visited site: Recall that Ping systems are assumed to perform well when agents traverse disjoint collection
cycles. But if every agent owns every node then there is no way to distinguish those nodes whose traversal
will or will not frustrate other agents. The upshot of this observation is that there are several sensible sets of
agent protocols that one can investigate; it takes some time to formulate hypotheses about such protocols,
program and simulate the corresponding systems, and analyze their outputs.

In Tables 9 and 10 we report the total rewards, averaged over agents, for the different versions. In each
case, the initial seed value is fixed and rewards are computed for different values of the parameters P and
T . In Table 11 we consider the effect of different initial seed values for version 4.

Finally we consider the effect of using a different number of agents. In Table 12 we consider N = 10
agents. For comparison, in Table 13 the rewards for Version 4 with 10 agents.

Table 8: Different versions of Ping II

Version Distinguishing Feature 1 Distinguishing Feature 2
1 P fixed pings all neighbors pinged

2 P fixed delayed agents not pinged

3 P = frustration − threshold strong ownership

4 P = frustration − threshold weak ownership
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Table 9: Total average reward for P, T parameters, versions 1 and 2

β = 0.9, 4× 4 grid, 6 agents, 104 steps. Top: version 1; bottom: version 2; initial seed: 1120000000
P T 1 2 3 4 5 6 7 8 9 10

1
1688
1704

1672
1670

1640
1629

1615
1615

1589
1589

1611
1611

1601
1601

1601
1601

1599
1599

1600
1600

2
1617
1313

1695
1698

1690
1699

1666
1668

1637
1616

1603
1620

1609
1602

1600
1602

1599
1599

1600
1600

3
1474
1452

1441
1448

1675
1672

1651
1673

1663
1666

1638
1628

1589
1603

1603
1587

1602
1597

1606
1603

4
1462
1328

1476
1219

1532
1508

1551
1522

1623
1690

1644
1654

1650
1608

1637
1618

1628
1592

1580
1587

5
1262
1415

1639
1403

1562
1462

1452
1629

1634
1672

1662
1670

1673
1669

1667
1610

1663
1664

1598
1613

5
1408
1431

1450
1245

1651
1323

1660
1503

1586
1589

1614
1603

1640
1686

1676
1678

1609
1668

1645
1652

7
1417
1223

1550
1309

1619
1555

1452
1464

1516
1596

1642
1658

1638
1685

1690
1676

1677
1640

1602
1613

8
1402
1077

1461
1590

1683
1374

1572
1640

1565
1526

1530
1616

1589
1658

1610
1678

1664
1680

1605
1667

9
1249
1323

1473
1224

1637
1291

1530
1213

1507
1678

1477
1530

1522
1635

1560
1664

1670
1683

1674
1690

10
1080
1242

1542
1175

1599
1278

1482
1224

1574
1220

1669
1451

1642
1587

1610
1623

1568
1664

1662
1684

Table 10: Total average reward for P, T parameters, versions 3 and 4

β = 0.9, 4× 4 grid, 6 agents, 104 steps. Top: version 3; bottom: version 4; initial seed: 1121100000
T 1 2 3 4 5 6 7 8 9 10

1
802
906

965
1428

951
1427

951
1412

951
1016

951
1366

951
1523

951
1555

951
1565

951
1541

Table 11: Effect of initial seeds on total average reward for T parameters

β = 0.9, 4× 4 grid, 6 agents, 104 steps. Version 4;
seed /T 1 2 3 4 5 6 7 8 9 10

1 909 1466 1479 1472 1277 1453 1558 1452 1445 1450
10 745 1361 1478 1470 1485 1087 1560 1565 1484 1063
100 991 1005 1452 1417 1397 1381 1080 1554 1014 1445
1000 936 1439 1278 1412 1179 1536 1355 1196 1357 1381
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Table 12: Reward for P, T parameters, 10 agents, version 1

β = 0.9, 10 agents; 4× 4 grid; 104 steps, pseudo random seed 1120673491
P/T 1 2 3 4 5 6 7 8 9 10

1 6012 7333 6237 6012 6007 6005 6001 5999 5999 5999
2 9041 9322 8109 6104 6083 6006 6004 5999 5999 5999
3 9489 9594 9078 8354 6068 5999 6047 5999 5999 5999
4 9491 9599 9407 8978 7424 6080 6081 5999 5999 5999
5 9482 9576 9495 9237 8870 8456 6055 5999 5999 5999
6 9418 9518 9537 9240 9138 8813 8479 5999 5999 5999
7 9429 9535 9550 9464 9281 9055 8784 5999 5999 5999
8 9383 9527 9539 9502 9379 9210 8997 5999 5999 5999
9 9319 9494 9499 9503 9425 9314 9128 5999 5999 5999
10 9296 9525 9522 9528 9477 9380 92310 5999 5999 5999

Table 13: Reward for P, T parameters, 10 agents, version 4

β = 0.9, 10 agents; 4× 4 grid; 104 steps, pseudo random seed 1120520563; Version 4

T 1 2 3 4 5 6 7 8 9 10
1154 9538 8625 7983 7539 7245 7044 6893 6780 6689

3 Conclusions

We have described low-level mathematical models and corresponding simulation platforms for coordination
of agents in constrained systems. The constraint is described in terms of a bottleneck in Ping I and in terms
of a distributed, replenishable resource on a grid in Ping II. Despite being low-level, the simulations describe
behavior of complex systems that cannot be captured and analyzed through closed form expressions. In both
Ping I and Ping II, agents respond to pressures caused by mismatch between internal drive to complete tasks,
versus environmental constraints that hinder these tasks, by imposing delays upon one another. In some
cases these delays accumulate and drive the system into low productive states, while in others, delays balance
out and do not prevent the system from achieving its capacity. We defined several metrics that facilitate
analysis of performance based on combinations of system parameters and agent protocols. We have thus
achieved some explanation of why and when some systems are able to coordinate and others not, in terms
of internal agent parameters versus system constraints. In foreseen applications of these methods to threat
evaluation, global constraints correspond to limited materials or communications channels, while internal
parameters correspond to psychological variables (e.g. frustration) and perception of threat or position in
a hierarchy relative to others requiring the same resources. Our results are still not complete in a number
of important ways. First, we have modeled only homogeneous agents and environmental resources: we have
not considered nonstationary situations in which environmental pressures depend on time or location, or in
which some agents have higher strength (in terms of ability to affect others) or rational powers. Perhaps
even more importantly, we have not yet been able to quantify in any automatically detectable way local
preconditions for poor performance.
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